• 运用统计方法提高数学建模学科竞赛能力研究

     

      摘 要:数学建模学科竞赛可以锻炼学生创新能力、团队合作,越来越受到高校的重视,从历年竞赛题目来看,统计方法的应用越来越多,因此在进行统计教学过程中可以采用项目驱动法有意识锻炼培养学生的建模能力。本文选取证券市场信息泄露分析作为教学项目,学生采用2003年开始到2010年A股市场的所有股票的日收益率和交易量数据建立统计模型,研究上市公司信息泄露的严重程度,从项目完成情况看,大多数同学较好完成了建模,并分析了证券市场信息泄露情况。可见在统计教学中项目驱动法可以培养学生的自学能力,提高学生数学建模能力。
    中国论文网 /9/view-6072286.htm
      关键字:数学建模竞赛;统计教学;项目驱动法
      数学建模是将实际问题抽象化,选取主要的变量、参数,应用与各学科有关的定律、原理,建立数学模型;然后用数学的方法进行分析、求解;再用实验的、观察的、历史的数据来检验该数学模型。由教育部高等教育司,中国工业与应用数学学会主办的全国大学生数学建模竞赛创办于1992年,每年一次,已成为全国高校规模最大的基础性学科竞赛,数学建模学科竞赛选题主要涉及经济学、管理学、医学、社会学等问题,将现实问题简化、抽象,运用概率论与数理统计、统计学、运筹学等方法分析解决社会实际问题,研究成果通常为论文。
      一、数学建模学科竞赛在人才培养方面的作用
      数学建模学科竞赛主要考察学生运用理论方法解决实际问题的能力,培养学生创新能力、锻炼逻辑思维、发散思维和开放性思考方式,训练大学生在竞赛中的抗压能力、增强快速获取信息和文献资料的能力、锻炼快速了解和掌握并运用新知识的技能、培养学生将实际问题转换成数据模型的能力、掌握将数学模型转换成计算机语言的能力、培养团队合作意识和团队合作精神。
      (一)培养学生综合应用知识的能力
      从全国大学生数学建模竞赛题目来看,竞赛题目涉及的统计知识包括运用概率统计、多元统计分析、时间序列分析、随机过程等方法解决的实际问题,如DNA 序列的分类、电力市场的输电阻塞管理、彩票问题、北京奥运会场馆的人流分布、艾滋病疗效评价、长江水质评价人口预测以及高校收费标准探讨等问题都不同程度地涉及统计知识。可见竞赛者必须深刻了解问题背景、查阅文献资料、了解学习各门学科专业知识,要想获取较好的成绩就必须具备统计思维、掌握统计方法、运用统计软件处理数据的能力。因此在统计课程教学的过程中注意联系实际问题,有意识融入数学建模思想,注重培养学生应用意识和应用能力,扩大学生的知识面,锻炼学生参加数学建模的基本技能,培养和提高学生综合运用所学知识解决实际问题的综合能力。
      (二)培养学生创新能力
      数学建模竞赛的题目来源于实际生活,有明确的背景与要求,没有唯一的答案,没有固定的求解方法,同一实际问题从不同的角度去分析就会得到不同的数学模型,因此需要学生根据自己的知识功底将问题抽象为所学习过的类似的内容,自己判断和分析,创造性地提出解决问题的模型,只要做出模型结果能经受实际的检验即可。这一过程培养学生独立思考能力,同时对理论与实际有更直观形象的认知,有更大的自主性和想象空间,培养分析问题和解决问题的能力和创新能力。
      (三)培养学生团队合作精神
      数学建模竞赛是以小组合作提交论文的形式完成,小组成员来自不同的专业或不同班级,大家在竞赛过程中相互学习、相互鼓励、相互配合。在讨论解决方案时各抒己见,有利于培养学生的沟通能力、团队合作精神。
      二、项目驱动法统计教学的意义
      由于数学建模竞赛中建模方法大多来源于统计方法,因此为了提高学生数学建模竞赛能力,在统计教学中,加入项目驱动法等教学方法,以项目任务的形式引导学生关注统计方法在各门学科中的应用,学生为了完成项目,必须课外自发进行相关学科内容的学习。以会计专业为例,财务管理筹资管理部分如果只是从定性和定量的角度进行讲解,学生对所学的内容只有机械认识,对所学的方法怎么分析现实问题是不了解的,因此在学习时间序列分析和假设检验后,就可以选择证券市场分析做为项目任务,给学生五个星期的时间,要求学生收集上市公司数据,建立统计建模,分析证券市场的有效性。从学生完成情况看,90%的学生能够按时完成建模,并收集历史数据进行了验证,并结合证券理论和财务理论分析模型结果。锻炼了学生的动手能力、应用能力、培养学生的创新能力,提高学生的实践能力,同时学生在完成课程任务过程中获取成就感,可以激发他们的求知欲望,培养独立探索的自学能力,提高了学生以后参加数学建模学科竞赛的自信心和能力。
      三、以证券市场信息泄露为例,培养学生数学建模能力
      (一)证券市场信息泄露的数学建模
      证券市场是信息密集型市场,证券价格对信息的变化十分敏感。为保证市场公正公平公开,客观上要求将所有信息准确充分及时地披露给投资者。然而在实践中,并非所有的信息都能被所充分及时披露。即使在信息披露要求苛刻的美国,如果披露会损害正常的商业交易,重要信息的延迟发布也是联邦证券法所许可的。但是,一旦公司可以合理地保留部分信息,那么信息并不是对所有的人都是公开的,而拥有内幕信息的人员更能准确地预测股票的未来价格或收益,这就为他们获得超额利润或减少损失提供了机会。
      内幕交易是指因地位或职务上的便利而能掌握内幕信息的人,直接或间接地利用内幕信息进行证券买卖,获取不正当的经济利益;或泄露内幕信息,使他人非法获利的行为。一旦内幕交易存在,证券市场在信息公开前后股票价格会存在较大波动,为了考察信息泄露情况,以沪深两市A股市场所有的上市公司为研究对象,取股票的时候剔除了ST类的股票,对2000年到至今的重大事件信息前后的股价波动情况进行研究。公司是否发生重大事件的问题。当个股的日相对收益率(相对于沪深300指数)超过7%的时候,认为该公司发生了重大的利好事件。而相反地,当个股的相对收益率小于-7%时,就认为该公司发生了重大的利空消息。之所以把阀值设为7%是因为当股票的相对收益率超过7%的时候,交易所会将这个交易日的主要的大单的信息披露。   1、计算超常收益率和累积超常收益率
      个股在时间的超常收益率为AR\-it=R\-it-R\-mt,其中R\-it是个股的日收益率,R\-mt是沪深300的日收益率。事件研究很重要的一点就是要确定事件的估计窗,事件窗和事后窗。采用[-10,10]的事件窗,由于不考虑beta效应(即认为beta系数为1),所以不必利用估计窗去估计beta系数。
      图1 估计窗,事件窗和事后窗示意图
      计算满足发生上面所定义的事件的所有的股票的超常收益率的大小,所以相当于要计算一个投资组合的超常收益率的情况。
      n种股票的平均超常收益率AAR\-t定义为
      从到时刻t的累积超常收益率为
      2、运用假设检验的思想,构建统计模型
      如果事件的发生对股价无影响的话,那么均服从均值为0的正态分布。这样可对是否为0进行检验来确定时间的发生是否对股价产生影响。其统计量分别为:
      (二)数学建模实证结果及说明
      1、2003年证券市场情况
      利用T检验对上面的统计量进行检验。计算个股的日相对收益率大于7%的时候,即公司的重大利好消息前后的累积超常收益率如下:
      图2 2003年利好消息前后累积超常收益率图
      其中t=6是事件的发生日,意味着在这一天个股的相对收益率超过7%。计算了在发生这个事件[-5,5]的累积超常收益率的变化情况,从图中可以看出对于03年的数据,在发生事件之前,并没有观察到累积超常收益率显著大于0. 所以,可以推测,03年A股市场的重大利好消息信息公布前信息泄露现象并不明显。观察事件发生日以后的CAR曲线可以看出,在利好消息公布后的第一天CAR继续保持了小幅的增长,而在之后的时间里,CAR曲线在逐步地下降。这表明,股票市场对重大利好消息存在着比较严重的过度反应现象。
      同样地,计算个股的日相对收益率小于-7%的时候,即公司公布利空消息前后的累积超常收益率的曲线如下:
      图3 2003年利空消息前后累积超常收益率图
      从上面的图可以看出,市场对利空消息的反应几乎和前面利好消息是对称的,对于03年的A股数据,在利空消息公布的前5天,几乎没有观察到超常收益率显著小于0的现象。
      结果证明在03年,无论是利好消息还是利空消息,整体信息的保密性做得都较好。
      2、2003年至2011年证券市场情况
      上面的例子中,只考虑了2003年的数据,为了考察信息泄漏现象随时间的改变情况,从2003年开始到最近,对于利好信息的公布前后,逐年计算了相应的CAR曲线。
      图4 2003-2010年利好消息前后累积超常收益率图
      上图是从03年到最近,CAR曲线的变化情况。如果按照事件发生前的累积超常收益率的大小作为衡量信息泄露严重程度的话,那么可以看出从03年以来,信息泄露的严重程度在国内市场正在变得越来越严重,内幕交易越来越严重。进一步计算出每一年事件发生[-5,-1]的累积超常收益率的大小,得到的结果如下所示:
      图5 2003-2010年利好消息前后累积超常收益率趋势图
      由图中看出,信息泄漏有随着时间变得越来越严重的现象。到了最近的一年,在利好消息公布的前5天,其累计超常收益率已经达到2.5%。具体的累计异常收益率的数据如下:
      由上面的结果看出我国的股票市场近年来的确存在信息泄露的现象,特别是在利好消息公布前,可以侦测到累积超常收益率明显大于0。
      四、结论
      通过对证券市场信息泄露的数学建模,不仅让学生对时间序列分析和假设检验中的T检验有深刻的认识,还把统计方法、财务理论有机结合,用数学模型分析现实问题,培养学生的创新精神和实践能力,提高学生数学建模的能力。
      [参考文献]
      [1]孔淑霞.渗透数学建模思想,培养学生实践能力[J].高师理科学刊.2012.9.83-85.
      [2]施东晖,傅浩.证券市场内幕交易监管:基于法和金融的研究[J].上证研究.2002
      [3]朱军,许其清.依托学科竞赛促进应用型人才培养能力培养[J].中国现代教育装备.2012.9.101-103.
      [4]韩志雄.关于t检验教学方法的探讨[J].卫生职业教育.2003.5.108.
      [5]祝红梅.资产重组中的内幕交易和股价操纵行为研究[J].南开经济研究.200305.
      [6]汪贵浦,池仁勇,陈伟忠.中国证券市场内幕交易的信息含量及与操纵市场的比较[J].中国管理科学.2004.12
      [7] 汪贵浦,楼旭明,汪少华.证券市场内幕交易有信息含量的临界点值推算[J].数学的实践与认识.2009(1)
      项目名称:本文为2012年防灾科技学院教研教改研究课题“创新项目和学科竞赛在会计专业人才培养中的应用研究”(课题编号2012A05)的阶段性成果
      (作者单位:防灾科技学院,河北 三河 065201)

    转载请注明来源。原文地址:https://www.xzbu.com/9/view-6072286.htm

    上一篇:以电子竞赛为契机 促进教学教程改革

    下一篇:电气信息类专业学科竞赛体系构建与实践


    相关文章: